首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   38篇
  2018年   2篇
  2017年   4篇
  2015年   5篇
  2013年   2篇
  2012年   6篇
  2011年   4篇
  2010年   3篇
  2009年   6篇
  2008年   5篇
  2007年   4篇
  2006年   5篇
  2005年   6篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   7篇
  1998年   5篇
  1997年   8篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1977年   3篇
  1976年   2篇
  1974年   3篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
  1970年   3篇
  1969年   2篇
排序方式: 共有137条查询结果,搜索用时 31 毫秒
101.
Inorganic phosphate (Pi) transport by wild-type cells of Escherichia coli grown in excess phosphate-containing media involves two genetically separable transport systems. Cells dependent upon the high affinity-low velocity Pst (phosphate specific transport) system have a Km of 0.43 +/- 0.2 microM Pi and a Vmax of 15.9 +/- 0.3 nmol of Pi (mg [dry weight]-1min-1) and will grow in the presence of arsenate in the medium. However, cells dependent upon the low affinity-high velocity Pit (Pi transport) system have a Km of 38.2 +/- 0.4 microM and a Vmax of 55 +/- 1.9 nmol of Pi (mg [dry weight]-1min-1), and these cells cannot grow in the presence of an arsenate-to-Pi ratio of 10 in the medium. Pi transport by both systems was sensitive to the energy uncoupler 2,4-dinitrophenol and the sulfhydryl reagent N-ethylmaleimide, whereas only the Pst system was very sensitive to sodium cyanide. Evidence is presented that Pi is transported as Pi or a very labile intermediate and that accumulated Pi does not exit through the Pst or Pit systems from glucose-grown cells. Kinetic analysis of Pi transport in the wild-type strain containing both the Pst and Pit transport systems revealed that each system was not operating at full capacity. In addition, Pi transport in the wild-type strain was completely sensitive to sodium cyanide (a characteristic of the Pst system).  相似文献   
102.
The effect of arsenate on strains dependent on the two major inorganic phosphate (Pi) transport systems in Escherichia coli was examined in cells grown in 1 mM phosphate medium. The development of arsenate-resistant Pi uptake in a strain dependent upon the Pst (phosphate specific transport) system was examined. The growth rate of Pst-dependent cells in arsenate-containing medium was a function of the arsenate-to-Pi ratio. Growth in arsenate-containing medium was not due to detoxification of the arsenate. Kinetic studies revealed that cells grown with a 10-fold excess of arsenate to Pi have almost a twofold increase in capacity (Vmax) for Pi, but maintained the same affinity (Km). Pi accumulation in the Pst-dependent strain was still sensitive to changes in the arsenate-to-Pi ratio, and a Ki (arsenate) for Pi transport of 39 microM arsenate was determined. The Pst-dependent strain did not accumulate radioactive arsenate, and showed only a transient decrease in intracellular adenosine triphosphate levels after arsenate was added to the medium. The Pi transport-dependent strain ceased growth in arsenate-containing media. This strain accumulated 74As-arsenate, and intracellular adenosine triphosphate pools were almost completely depleted after the addition of arsenate to the medium. Arsenate accumulation required a metabolizable energy source and was inhibited by N-ethylmaleimide. Previously accumulated arsenate could exchange with arsenate or Pi in the medium.  相似文献   
103.
Plasmids in both Escherichia coli and Staphylococcus aureus contain an "operon" that confers resistance to arsenate, arsenite, and antimony(III) salts. The systems were always inducible. All three salts, arsenate, arsenite, and antimony(III), were inducers. Mutants and a cloned deoxyribonucleic acid fragment from plasmid pI258 in S. aureus have lost arsenate resistance but retained resistances to arsenite and antimony, demonstrating that separate genes are involved. Arsenate-resistant arsenite-sensitive S. aureus plasmid mutants were also isolated. In E. coli, plasmid-determined arsenate resistance and reduced uptake were additive to that found with chromosomal arsenate resistance mutants. Arsenate resistance was due to reduced uptake of arsenate by the induced plasmid-containing cells. Under conditions of high arsenate, when some uptake could be demonstrated with the induced resistant cells, the arsenate was rapidly lost by the cells in the absence of extracellular phosphate. Sensitive cells retained arsenate under these conditions. When phosphate was added, phosphate-arsenate exchange occurred. High phosphate in the growth medium protected cells from arsenate, but not from arsenite or antimony(III) toxicity. We do not know the mechanisms of arsenite or antimony resistance. However, arsenite was not oxidized to less toxic arsenate. Since cell-free medium "conditioned" by prior growth to induced resistant cells with toxic levels of arsenite or antimony(III) retained the ability to inhibit the growth of sensitive cells, the mechanism of arsenite and antimony resistance does not involve conversion of AsO2- or SbO+ to less toxic forms or binding by soluble thiols excreted by resistant cells.  相似文献   
104.
We studied the course of infection of the female-specific bacteriophage phiII in male and female cells isogenic except for the presence of the substituted sex factor, F'lac. Both male and female cells are killed by phiII; however, only limited phage replication occurs in male cells. Host macromolecular synthesis stops abruptly at 4 to 6 min after infection of male cells, and synthesis of phage components cannot be detected. Experiments with chloramphenicol indicate that phage deoxyribonucleic acid (DNA) penetrates into male cells, since protein synthesis after infection is required to stop synthesis of DNA in males. Phage DNA becomes membrane-associated in both female and male cells. In male cells, parental phage DNA does not dissociate from the membrane during the latent period as is the case with females, indicating a block in phage DNA replication. Isolation of nonrestricting F'lac mutations indicates involvement of a specific episome product in phiII restriction.  相似文献   
105.
The presence of phospho-beta-glucosidases and beta-glucoside permeases was found in strains of Streptococcus, Bacillus, and Staphylococcus. In streptococci, the phospho-beta-glucosidase activity depends on the antigenic group. The highest activity was found in strains of group D. In group D strains, phospho-beta-glucosidase activity is induced by beta-methyl glucoside and cellobiose but not by thiophenyl beta-glucoside (TPG). With the exception of four strains isolated in Japan, all strains of B. subtilis tested possess an inducible phospho-beta-glucosidase activity, beta-methyl glucoside, cellobiose, and TPG acting as inducers. S. aureus strains possess phospho-beta-glucosidase A but not phospho-beta-glucosidase B, whereas most S. albus strains show no detectable phospho-beta-glucosidase activity. The prompt fermentation of beta-methyl glucoside by S. aureus strains could serve as an additional criterion for their differentiation from S. albus. A comparative investigation of the active uptake of (14)C-TPG showed that a Streptococcus group D strain and a B. subtilis strain posses two inducible permeases with characteristics similar to the beta-glucoside permeases I and II of Enterobacteriaceae. In S. aureus, TPG is accumulated by a constitutive permease with high affinity for aromatic beta-glucosides and glucose. The active uptake of TPG by S. aureus appears to depend on the activity of the phosphoenol pyruvate-dependent phosphotransferase system.  相似文献   
106.
Studying the specific effects of water and nutrients on plant development is difficult because changes in a single component can often trigger multiple response pathways. Such confounding issues are prevalent in commonly used laboratory assays. For example, increasing the nitrate concentration in growth media alters both nitrate availability and osmotic potential. In addition, it was recently shown that a change in the osmotic potential of media alters the plant's ability to take up other nutrients such as sucrose. It can also be difficult to identify the initial target tissue of a particular environmental cue because there are correlated changes in development of many organs. These growth changes may be coordinately regulated, or changes in development of one organ may trigger changes in development of another organ as a secondary effect. All these complexities make analyses of plant responses to environmental factors difficult to interpret. Here, we review the literature on the effects of nitrate, sucrose and water availability on root system growth and discuss the mechanisms underlying these effects. We then present experiments that examine the impact of nitrate, sucrose and water on root and shoot system growth in culture using an approach that holds all variables constant except the one under analysis. We found that while all three factors also alter root system size, changes in sucrose and osmotic potential also altered shoot system size. In contrast, we found that, when osmotic effects are controlled, nitrate specifically inhibits root system growth while having no effect on shoot system growth. This effectively decreases the root : shoot ratio. Alterations in root : shoot ratio have been widely observed in response to nitrogen starvation, where root growth is selectively increased, but the present results suggest that alterations in this ratio can be triggered across a wide spectrum of nitrate concentrations.  相似文献   
107.
The scarcity of water in arid and semiarid regions of the world is a problem that every day increases by climate change. The subsurface drip irrigation (SDI) and changes in population density of plants are alternatives that can be used to make a sustainable use of water. Therefore, the objectives of this study were to determine the combination that allows for an increased corn performance and efficient use of water without losing the quality of forage. Three different irrigation levels were applied through a system of a SDI at three different densities of forage maize plants in an arid region. The results demonstrated that by applying different levels of water, either enough or lack of soil moisture is created, which is directly reflected in crop yield, and its determining variables such as green forage and dry matter yield, and nutritional quality. The irrigation level to a 100% of potential evapotranspiration (PET), at a density of 80000 plants/ha, increased yield of green forage to 57664 kg/ha; crude protein was 8.59%, while the rest of the quality parameters decreased. This study allowed to conclude that the irrigation level was the major factor in the response of the crop.  相似文献   
108.
Even though the liver synthesizes most of circulating IGF-1, it lacks its receptor under physiological conditions. However, according to previous studies, a damaged liver expresses the receptor. For this reason, herein, we examine hepatic histology and expression of genes encoding proteins of the cytoskeleton, extracellular matrix, and cell-cell molecules and inflammation-related proteins. A partial IGF-1 deficiency murine model was used to investigate IGF-1’s effects on liver by comparing wild-type controls, heterozygous igf1+/?, and heterozygous mice treated with IGF-1 for 10 days. Histology, microarray for mRNA gene expression, RT-qPCR, and lipid peroxidation were assessed. Microarray analyses revealed significant underexpression of igf1 in heterozygous mice compared to control mice, restoring normal liver expression after treatment, which then normalized its circulating levels. IGF-1 receptor mRNA was overexpressed in Hz mice liver, while treated mice displayed a similar expression to that of the controls. Heterozygous mice showed overexpression of several genes encoding proteins related to inflammatory and acute-phase proteins and underexpression or overexpression of genes which coded for extracellular matrix, cytoskeleton, and cell junction components. Histology revealed an altered hepatic architecture. In addition, liver oxidative damage was found increased in the heterozygous group. The mere IGF-1 partial deficiency is associated with relevant alterations of the hepatic architecture and expression of genes involved in cytoskeleton, hepatocyte polarity, cell junctions, and extracellular matrix proteins. Moreover, it induces hepatic expression of the IGF-1 receptor and elevated acute-phase and inflammation mediators, which all resulted in liver oxidative damage.  相似文献   
109.
Non-uniform stress and strain fields are prevalent in many tissues in vivo, and often exacerbated by disease or injury. These mechanical gradients potentially play a role in contributing to pathological conditions, presenting a need for experimental tools to allow investigation of cell behavior within non-uniformly stimulated environments. Herein, we employ two in vitro cell-stretching devices (one previously published; one newly presented) capable of subjecting cells to cyclic, non-uniform stretches upon the surface of either a circular elastomeric membrane or a cylindrical PDMS tube. After 24 hours of cyclic stretch, 10T1/2 cells on both devices showed marked changes in long-axis orientation, with tendencies to align parallel to the direction of minimal deformation. The degree of this response varied depending on location within the stretch gradients. These results demonstrated the feasibility of conducting cell mechanobiology investigations with the two novel devices, while also highlighting the experimental capabilities of non-uniform mechanical environments for these types of studies. Such capabilities include robust data collection for developing mechanobiological dose-response curves, signal threshold identification, and potential spatial targeting for drug delivery.  相似文献   
110.

Background  

The ability of adult humans to digest the milk sugar lactose - lactase persistence - is a dominant Mendelian trait that has been a subject of extensive genetic, medical and evolutionary research. Lactase persistence is common in people of European ancestry as well as some African, Middle Eastern and Southern Asian groups, but is rare or absent elsewhere in the world. The recent identification of independent nucleotide changes that are strongly associated with lactase persistence in different populations worldwide has led to the possibility of genetic tests for the trait. However, it is highly unlikely that all lactase persistence-associated variants are known. Using an extensive database of lactase persistence phenotype frequencies, together with information on how those data were collected and data on the frequencies of lactase persistence variants, we present a global summary of the extent to which current genetic knowledge can explain lactase persistence phenotype frequency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号